Fine boundary regularity for the degenerate fractional p-Laplacian
نویسندگان
چکیده
منابع مشابه
Existence solutions for new p-Laplacian fractional boundary value problem with impulsive effects
Fractional differential equations have been of great interest recently. This is because of both the intensive development of the theory of fractional calculus itself and the applications of such constructions in various scientific fields such as physics, mechanics, chemistry, engineering, etc. Differential equations with impulsive effects arising from the real world describe the dyn...
متن کاملExistence and uniqueness of solutions for p-laplacian fractional order boundary value problems
In this paper, we study sufficient conditions for existence and uniqueness of solutions of three point boundary vale problem for p-Laplacian fractional order differential equations. We use Schauder's fixed point theorem for existence of solutions and concavity of the operator for uniqueness of solution. We include some examples to show the applicability of our results.
متن کاملREGULARITY AND FREE BOUNDARY REGULARITY FOR THE p LAPLACIAN IN LIPSCHITZ AND C1 DOMAINS
In this paper we study regularity and free boundary regularity, below the continuous threshold, for the p Laplace equation in Lipschitz and C domains. To formulate our results we let Ω ⊂ R be a bounded Lipschitz domain with constant M . Given p, 1 < p < ∞, w ∈ ∂Ω, 0 < r < r0, suppose that u is a positive p harmonic function in Ω ∩ B(w, 4r), that u is continuous in Ω̄ ∩ B̄(w, 4r) and u = 0 on ∆(w,...
متن کاملGlobal Regularity for the Free Boundary in the Obstacle Problem for the Fractional Laplacian
We study the regularity of the free boundary in the obstacle problem for the fractional Laplacian under the assumption that the obstacle φ satisfies ∆φ ≤ 0 near the contact region. Our main result establishes that the free boundary consists of a set of regular points, which is known to be a (n− 1)-dimensional C manifold by the results in [7], and a set of singular points, which we prove to be c...
متن کاملThe Dirichlet Problem for the Fractional Laplacian: Regularity up to the Boundary
We study the regularity up to the boundary of solutions to the Dirichlet problem for the fractional Laplacian. We prove that if u is a solution of (−∆)u = g in Ω, u ≡ 0 in R\Ω, for some s ∈ (0, 1) and g ∈ L∞(Ω), then u is C(R) and u/δ|Ω is C up to the boundary ∂Ω for some α ∈ (0, 1), where δ(x) = dist(x, ∂Ω). For this, we develop a fractional analog of the Krylov boundary Harnack method. Moreov...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 2020
ISSN: 0022-1236
DOI: 10.1016/j.jfa.2020.108659